There is a tendency in chemical industry to electrify thermal chemical processes in order to reduce carbon footprint [1]. Therefore, electrification of Thermal Swing Adsorption processes is also of interest. Alternative heating methods such as Joule heating (Electrical Swing Adsorption - ESA) [2], Microwave heating (Microwave Swing Adsorption - MSA) [3] and Magnetic Induction heating (Magnetic...
Equilibrium single-component measurements are routinely performed using volumetric or gravimetric techniques. However, because industrial processes deal with mixtures and different molecules compete for the same adsorption sites, single-component isotherms are of limited use in designing a separation process. Researchers have long tried to predict mixture adsorption based on single-component...
Zeolites are porous material widely used as a catalyst, adsorbent in many industrial fields. Zeolite framework consist of mainly Si, Al and O, and it is important to control the position of Al at the atomic level. In addition, the size of zeolite particles are generally micron order, and the distribution of elements at that scale is expected to significantly affect the properties of zeolites....
The characterization of porous aluminas has been a long-standing problem due to their complex, disordered porous structures, with structural features ranging from the nanometre to the millimetre scale. There is a need to understand how the pore structure influences mass transport, to guide new catalyst designs and optimize catalytic processes. However, the complex, hierarchical nature of...
In recent years, the ever increasing development of manufacturing techniques has allowed the synthesis of a wide range of structured adsorbents designed to address some of the shortcomings of conventional pelletised materials. Channel shapes and flow patterns are engineered to minimise pressure drop, improve adsorption/desorption kinetics and maximise accessibility to the active material. The...
Thanks to their perfectly tailored framework topologies, small-pore zeolites have received much attention in the last years for separation of small gases with high added values.[1]. However, finding the best zeolites for such task is not easy since many parameters have to be synergistically screened. In this context, we present a comprehensive study mixing DFT calculations and molecular...
Imagine a computer dreaming up a porous material with mathematically optimized properties for a specific application. In this presentation, I will share some ideas on how to practically realize this concept.
The exponential growth of available and hypothesized porous materials, including Metal-Organic Frameworks (MOFs), has necessitated a fundamental shift in our approach to selecting porous...
Porous materials have shown remarkable effectiveness in energy and environmental applications. However, the current method of presenting adsorption isotherms through graphs and figures falls short in terms of reproducibility, reuse, and data sharing. It is crucial to promote open science in the field of porous materials for future researchers [1].
Since 2021, we have developed a novel...
We explore the capabilities of 3D molecular models of amorphous nanoporous carbons for reproducing the morphological and adsorption properties of practical activated carbons. The 3D models are generated using a reactive forcefield in molecular dynamics (MD) simulations to anneal and quench structures by mimicking the procedures used for production of practical carbons. This approach allows for...
Mixed matrix membranes (MMMs) incorporating MOFs into polymeric matrices show promising properties for several key gas separation processes. Understanding of the MOF/polymer interface and gas transport through the MMMs is of utmost importance. Here, we selected a series of MOFs as fillers in conjunction with both rigid and flexible polymers and we deployed our in-house computational strategy...
Reversed-phase high-performance liquid chromatography (HPLC) is a fundamental tool for the purification and analysis of peptides. Peptides are separated on a hydrophobic stationary phase and eluted with a gradient of increasing organic solvent concentration. The nonpolar stationary phases are most often spherical porous silica particles that have been surface derivatized with hydrocarbon...
Chemical contamination in water and air streams requires the design of novel adsorbents able to retain/concentrate these pollutants selectively and with a high adsorption capacity. Activated carbons, zeolites, silicas, and metal-organic frameworks are among the most frequently used adsorbents to this end. Utilizing MOFs for this purpose offers a significant advantage in terms of customization,...
Small-angle scattering of X-rays (SAXS) has long been used to characterize nanoporous materials. An advantage is that SAXS is sensitive to both, open and closed pores, and can thus deliver complementary information to gas sorption analysis (GSA). While integral parameters such as the specific pore volume or the specific surface area can readily be obtained from both methods using classical...
The investigation and understanding of the underlying mechanisms for the crystallization of molecular sieve materials such as metal-organic frameworks (MOFs) and zeolites have received increasing interest in recent years. This is mainly because improvements of the corresponding equipment were made that is essential for in situ diagnostics. In contrast to classical techniques, such as X-ray...
Nuclear magnetic resonance (NMR) relaxometry enables facile characterization of a variety of porous materials filled with liquids and gases. This study identifies quantitative correlations between surface chemistry and NMR relaxation rates for a series of polymeric particle dispersions, serving as well controlled examples of surface fluid interactions [1].
In NMR relaxometry, the measurement...
During the last decades, major progress has been made concerning the synthesis of nanoporous materials allowing for the custom design of nanoporous materials for targeted applications in various areas such as chromatography or catalysis. Enhancing the efficiency of these processes requires the tuning of the selectivity of the porous material to certain compounds of interest. Textural...
The cellular structures of the brain are separated by a narrow fluid-filled extracellular (interstitial) space giving brain tissue properties of a porous medium. The porosity and tortuosity can be measured by releasing tetramethylammonium cations from a micropipette and measuring the time-dependent concentration about 100 µm away using an ion-selective microelectrode (ISM), as shown in Fig. 1...
The 1-D, 2-D, and 3-D classical Density Functional Theory (cDFT) consistent with the PC-SAFT equation of state are used to investigate the adsorption isotherms and local densities of pure hydrocarbons, H2, and CO2 and their mixtures in crystalline-structure materials (like MOF-5) and amorphous materials (like nanoporous carbons). The cDFT calculations reveal that the adsorption process is...
Water confined in nanoporous materials has focused many attentions due to its vast number of technical applications and scientific fields such as geosciences, biology, catalysts, gas separation, etc [1,2 Indeed, confinement of water in nanopores affects its thermodynamic properties such as its density, its freezing temperature, the crystal structure, etc. For some years now, porosimeter...
Natural and synthesised porous media are generally composed of a double porosity: a microporosity where the fluid is trapped as an adsorbed phase and a meso- or a macroporosity required to ensure the transport of fluids to and from the smaller pores. In nanometer-scale pores, the molecules of fluid are confined. This effect induces that fluid-fluid and fluid-solid interactions sum at the pore...
Flexible metal–organic frameworks (MOFs) exhibit a guest-induced structural transition upon gas adsorption, called “gate opening” or “breathing,” and are expected to be applied to gas separation processes due to their high selectivity and stepwise change in the amount adsorbed. [1] While the mechanism of the adsorption-induced structural transition has been explained by thermodynamics, [2] the...
Kerogen is an intrinsically complex, heterogeneous, and disordered material [1]. Depending on its geological origin and maturity, the chemical composition of kerogen may vary significantly along with its structural properties, such as the cross-link density of the network and its intrinsic porosity [2]. Furthermore, upon hydrocarbon migration in shales, extraction, and adsorption, the...